Updated: 20 December 1996 |
Preserving Computings Past: Restoration and Simulation Maxwell M. Burnet and Robert M. Supnik AbstractRestoration and simulation are two techniques for preserving computing systems of historical interest. In computer restoration, historical systems are returned to working condition through repair of broken electrical and mechanical subsystems, if necessary substituting current parts for the original ones. In computer simulation, historical systems are re-created as software programs on current computer systems. In each case, the operating environment of the original system is presented to a modern user for inspection or analysis. This differs with computer conservation, which preserves historical systems in their current state, usually one of disrepair. The authors argue that an understanding of computings past is vital to understanding its future, and thus that restoration, rather than just conservation, of historic systems is an important activity for computer technologists. The Computing PastThe continuous improvements in computing technology cause the rapid obsolescence of computer systems, architectures, media, and devices. Since old computing systems are rarely perceived to have any value, the danger of losing portions of the computing record is significant. When a computing architecture becomes extinct, its software, data, and written and oral records often disappear with it. Older computer systems embody major investments in software, the value of which may persist long after the systems have lost their technical relevancy. For example, the PDP-11 computer has not been a leading-edge architecture since the introduction of 32-bit systems in the late 1970s and has not received a new hardware implementation since 1984. Nonetheless, PDP-11 systems continue to be used worldwide, particularly in real-time and control applications. The unavailability of suitable replacements of worn-out original parts is a serious issue for PDP-11 systems still in use. Another area of potential loss is data. In recent years, archival storage media have undergone rapid technologic evolution, and the industry standards of computings first 30 years, such as 0.5-inch magnetic tape, are now antiques. Salvaging data from original media is an industry-wide problem and has generated a small cottage industry of specialists in data recovery. This problem will only proliferate, as transitions in media types accelerate. Ten years from now, the large-diameter optical disks used for todays archives will look as quaint as DECtape and magnetic tape storage systems do to current computer users. Finally, the disappearance of older equipment typically entails loss of information: not only design sketches, blueprints, and documentation, but also the folklore about these systems. The absence of systematic archiving, as well as the absence of a perceived value of the archived data, causes continual information decay about design and operational details. This paper describes two techniques for preserving computing systems of historical interest. The first section of the paper discusses the restoration of old computers to working order. It also includes a description of the Australian Museum collection and the process of restoring a particular PDP-11 minicomputer. The second section discusses the simulation of old computers on modern systems. It describes a simulation framework called SIM, which has been used to implement simulators for the PDP-8, PDP-11, PDP-4/7/9/15, and Nova minicomputers. Restoring Old ComputersSince the computer became a mass-produced item in the late 1960s, its typical life cycle has consisted of initial installation, rental or depreciation for about five years, retention and use for a few more years (just in case), and then retirement and a trip to the refuse dump. There is only a brief window of opportunity to collect old computers at the end of their working life. Once that window is closed, the computers are gone forever. The Australian Museum CollectionIn Sydney Australia, this window of opportunity first became apparent in 1971, when the early PDP systems reached the ends of their life cycles. Digitals Australian subsidiary began collecting systems by a creative program of trade-ins for new equipment.1 It was especially urgent to obtain examples of the 12-bit, 18-bit, and 36-bit PDP series, as they were relatively few in number. Table 1 lists the percentage of available units that have been collected. The status of each is given as
Once a representative sample of the early PDP systems had been collected, the urgency abated. Hundreds of PDP-11 and VAX systems were then brought to Australia; the window of opportunity for collecting them is still open. Table 1 Early Digital CPUs in Australia
The collection has grown significantly during the last 25 years. At the present time, we have in Sydney a comprehensive collection of most early Digital machines, including hardware, manuals, software, and spares (see Table 2). The collection is catalogued in a 6,000-line database that resides, appropriately, on a MicroVAX I computer, running the first version of the MicroVMS operating system. Figure 1 shows an example from the collection, a PDP-8/E computer system with peripheral equipment. Figure 1: PDP-8/E Computer SystemTable 2 The Digital Australian Collection (chronological order) The goals of the collection are varied and are summarized in Table 3. Apart from the academic challenge of keeping all old data media running, there is the responsibility to ensure that they can be kept alive and available. The extensive variety of media types offered by Digital alone in only 30 years is summarized in Table 4. The evolving status of the collection has been reported at several Australian DECUS Symposia.2,3 The restoration of the Australian collection will probably ensure a retirement job for the curator for the next 30 years! Table 3 Goals of the Australian Digital Museum To preserve one of each model of Digital's computers To keep each major Digital operating system working To have a working unit of each Digital terminal, console, and PC To provide conversion and archival facilities for old media To preserve significant Digital literature and manuals To preserve a VAX-11/780 computer as the original unit of 1 VUP To disseminate instructive and educational material To educate and amuse our staff, our customers, and the public To support the DECUS NOP (nostalgic obsolete product) Special Interest Group To preserve spares, tools, test gear, and documentation to keep the collection working To preserve and protect these treasures for future generations Table 4 Digital Data Media from 1960 to 1996 Paper tape 80-column punched and mark sense cards 7-track, half-inch magnetic tape 9-track, half-inch magnetic tape DECtape and LINCtape systems Audiocassette DECtape II cartridge (TU58) CompacTape (TK50, etc.) Quarter-inch cartridge tape Digital audio tape 8-inch floppy disk 5.25-inch floppy disk 3.5-inch floppy disk RK05 removable disk RK06, RK07 removable disk RL01, RL02 removable disk RP01...RP06 removable disk RM03, RM05 removable disk RC25 removable disk General Issues in RestorationRestoration is a painstaking and time-consuming process. The goal of restoration is to return a system to a state where it will reliably run a major operating system and offer as many media conversion facilities of the vintage as possible. Fortunately, computers do not deteriorate greatly in storage, provided the storage area is dry. (One item that does decay dramatically is the black foam used to line side panels and to separate ribbon cables. After 20 years, it turns into a sticky, gooey mess. It should be removed as soon as possible; otherwise, it falls into the modules and backplane. Replacing it with a modern equivalent can be done but is not essential.) The first step in restoration is to collect hardware, software, and documentation.
There is a network of enthusiasts around the world who can help at this stage. Once the "ingredients" have been collected, the steps needed to restore a 1960s or 1970s vintage machine are as follows:
Conventional wisdom would now advise that all the diagnostic routines be run. However, diagnostics were (philosophically) always used to find bugs in a previously good machine; they are too complex when huge chunks of the machine might still be missing. The most practical next step is to get mass storage on-line. Depending on the manufacturer, the target device may be a floppy disk drive, a cartridge hard disk drive, or some form of magnetic tape. With a working mass storage device and a bootstrap routine, it becomes possible to boot a simple operating system (like OS/8 or RT-11 for Digitals systems). This quickly shows whether the machine is working or not. If a mass storage device is not available, the next best thing is paper tape. This can be either the systems rack-mounted reader and punch or the paper tape reader on an ASR33 or ASR35 console. The reliability is questionable, however, and the procedure is tedious. Many diagnostics were on paper tape, but usually the quickest test is to load a complete paper system (such as FOCAL for Digitals systems). If the diagnostics run, the system is probably functional. Once the CPU, console, and memory are verified, additional peripherals can be added, one at a time. It pays to take the time and effort to research bus addresses, interrupt vectors, power supply loading, and module placement, and to keep a log book with configuration diagrams and results. In general, if the configuration rules are followed, the items will work. There are few electronic failures, even in 20- or 30-year-old modules. When a problem arises, it is usually address vector strapping, physical damage, or missing cables. Corrosion of board contacts can be a problem; they should be cleaned with a clean cloth or cardboard (for example, a business card), not with a pencil eraser, which leaves residues. Silicon components appear to be very stable and a tribute to the conservative design principles of early computer engineers. The main components that seem to age are power supply capacitors, fans, and lights. The filter capacitors across the high-voltage sources can short, and reference electrolytic capacitors in power supply regulators can dry out. Although the large capacitors in power supply RC filters have proven to be reliable, some restorers replace them as a matter of course for safety reasons. Small rotary fans may seize if they have logged many hours. Incandescent panel lamps are always failing and can be replaced by modern light-emitting diodes (LEDs) if required. The irony is that the panel lamps are needed only during initial checkout; once the operating system is running, they are rarely used. Once restored, are old units reliable? Experience proves that they are. A classic PDP-8 system restored in 1988 still turns on happily (untouched) eight years later. A fully configured PDP-8/E system is still working four years after restoration. Restoring a Minicomputer: A Case StudyAn ongoing project is the restoration of a large, UNIBUS-based PDP-11 system with many UNIBUS peripherals attached to it. The project was started using the original PDP-11/20 CPU. Since many PDP-11 peripherals were designed long after the PDP-11/20 CPU, it could not cope with single-board direct memory access (DMA) devices, metal-oxide semiconductor (MOS) memory, and other later inventions. The project refocused on the mid-range PDP-11/34, which in retrospect has proved wise. The PDP-11/34 supports MOS memory, has an LED and push-button console, and represents a mature implementation of the PDP-11 instruction set. It has an optional cache, battery backup, floating-point operation, and the extended instruction set (EIS). The current configuration occupies three large cabinets in what used to be the dining room of Max Burnets house. The virtues of the UNIBUS are many; in particular, it allows modular connection of I/O devices and other components. However, I/O devices of the era often weigh 100 pounds and are mounted in 10-inch drawers; their sheer physical size and weight are disincentives to reconfiguration. The project currently uses the RT-11 operating system because of its simplicity and extensive device drivers. Eventually, it may be possible to run the RSX-11M and the RSTS/E systems, but there is little to gain from a media conversion point of view, because RT-11 includes utilities for dealing with foreign file formats. The main difficulties encountered have been associated with the power supply: the DC low signal threads its way through every peripheral. The absence of UNIBUS grant continuity cards can create havoc. Since this PDP-11 system is very large, it is straining the design rules concerning floating vectors, current loading, and bus loads. The CPU and memory are relatively easy to check out. Due to the versatility of the UNIBUS, however, checking out the I/O system is very laborious. Starting with programmed I/O tests works best, followed by interrupt tests, and finally DMA or nonprocessor reference (NPR) tests. Experience shows that tests need to be rerun whenever a new peripheral is added. The system currently runs the RT-11 version 5.04 operating system on a configuration comprising
Although the following peripherals are available, they await installation time and effort:
The eventual goal is to keep "the last great (UNIBUS) PDP-11" running with almost every UNIBUS peripheral ever made.4 Time will tell. Simulating Old ComputersA simulator is a computer program operating on one computer system (known as the host system) which mimics the behavior of another computer system (known as the target system). The simulators data is the state of the target computer system registers, memory, timed events, and so on. The simulator operates on presented state and transforms it, usually by sequential evaluation, in the same manner as would the target computer system. Simulators typically consist of an execution engine, which performs the state transformations; a simple timed-event mechanism, which supports deferred and asynchronous events such as I/O completions; and a control panel, which provides user access to simulated state. The execution engine is responsible for decoding instructions in simulated memory and performing the specified alterations of simulated machine state. The execution engine keeps track of simulated time in arbitrary units, which may be precise representations of the execution time of the target system, or simple representations of advancing time, such as the number of instructions executed. The event mechanism provides a way to schedule events, such as I/O completion, for later evaluation. It can also implement other time-based mechanisms such as keyboard polling. Finally, the control panel provides access to simulated state as well as basic control commands such as start and stop. It may also provide more elaborate facilities to support performance instrumentation or debugging. Historically, simulators have been used for many purposes, including the following:
Simulation LevelsSimulators can be written at various levels of detail and thus various levels of fidelity to the target system. Three common levels of simulation are register transfer level (RTL), instruction, and software specific. An RTL simulator attempts to mimic the major hardware blocks of the target system and to implement its actual logic equations. The goal is absolute fidelity, the test of which is that no piece of software running on the simulator should behave differently than it would on the target hardware. In practice, such perfect mimicry is difficult to achieve, as it requires a painstaking re-creation of timing detail (for example, the actual acceleration curve of a DECtape storage system) and access to implementation documentation that has often vanished. Nonetheless, some simulators have achieved results very close to this goal: MIMIC, a DECsystem-10 simulator written at Applied Data Research, was able to run CPU- and device-specific diagnostics. (As testimony to the vulnerability of computings past, all machine-readable copies of the MIMIC sources appear to have been lost.) An instruction simulator steps back from the RTL level and tries to simulate at the functional or the behavioral level. System elements are treated as functions that transform state according to the abstract definitions of the system architecture, rather than as logic blocks that transform state based on implementation equations. Instruction simulators sacrifice absolute fidelity to the idiosyncrasies of a particular implementation and focus on the intentions of the architecture specification. As a result, instruction simulators can usually run systems software and applications but can rarely fool diagnostics. Finally, a software-specific simulation further abstracts the functions of the target system to only those needed by a particular piece of target system software. For example, the OS/8 operating system on the PDP-8 computer does not use program interrupts; a simulator aimed at running only the OS/8 operating system would not need to implement interrupts or even queued events. A recent PDP-11 simulator designed to run the 2.9BSD UNIX operating system abstracted parts of the PDP-11 systems interrupt model and could not run other PDP-11 operating systems.12 Simulating Minicomputers: A Case StudySIM is a portable instruction-level minicomputer simulator implemented in C. Its objectives are to facilitate the study and use of historic computer architectures by making simulated implementations and historic software available to anyone who has a 32-bit computer. It supports the following target architectures
and has been successfully ported to the VAX VMS, the Alpha OpenVMS, the Digital UNIX, and the Linux architectures. Ports to the Windows NT and the Windows 95 architectures and to an IBM 1401 simulator are under way. General Design Considerations The design of an instruction-level simulator is not technically complicated; indeed, simulating a PDP-8 system is a common problem in undergraduate computer science courses. SIM follows the processor-memory-switch (PMS) structure proposed by Bell and Newell and implemented in MIMIC and countless other simulators since.10,13 The simulated system is a collection of devices, one of which has special properties (the CPU). Each device has state (registers) and one or more units. Each unit has state and fixed- or variable-sized storage. In the CPU device, the storage is main memory. In an I/O device, the storage is the device media. The CPU is distinguished from other devices by having the master routine for instruction execution. This routine is responsible for the sequential evaluation of instructions and for the state transformations that represent simulated execution. The CPU also provides a few systemwide routines, such as symbolic disassembly and input and a binary loader. The devices interface to a control panel that provides access to simulated state and control over execution. The available commands in SIM are listed in Table 5. Table 5 Commands Available in SIM
The control panel also includes routines that are needed by most simulators, such as event queue maintenance and character-by-character terminal I/O. Different simulators need not use the same time base, but all the SIM-based implementations to date use the number of instructions executed as the time base. Note that the control panel provides for starting simulation, but termination is determined entirely by the simulated CPU. By convention, the CPU returns control to the control panel under the following conditions:
Likewise, the control panel does not implement any debugging facilities beyond state examination and modification and instruction stepping. To facilitate debugging with operating systems, CPUs provide a simple instruction breakpoint capability and a one-level PC trace facility. Implementation The implementation of a particular simulator begins with collecting reference manuals, maintenance manuals, design documents, folklore, and prior simulator implementations for the target system. This is nontrivial. In the early days of computing, companies did not systematically collect and archive design documentation. In addition, collected material is subject to information decay, as noted earlier. Lastly, the material is likely to be contradictory, embodying differing revisions or versions of the architecture, as well as errors that have crept in during the documentation process. For Digitals 12-bit and 16-bit minicomputers, the typical hierarchy of documentation was the following:
An important consideration is that much of the documentation, all the folklore, and most working systems are in the hands of individual collectors. The Internet plays a vital role in locating material held by enthusiasts, through news conferences such as alt.folklore.computers, alt.sys.pdp8, alt.sys.pdp11, and comp.emulators.misc, and more recently, through World Wide Web sites devoted to historic systems.14--16 The sources for each simulator in SIM are listed in Table 6. Table 6 Sources for Simulators in SIM
The last step in implementation is collecting software to run on the simulator. Software collection immediately raises the problem of media translation. Software for historic systems resides on paper tapes, DECtape storage systems, 200/556/800 bits-per-inch magnetic tapes, disk cartridges, 8-inch floppy disks, and so on. Few if any modern systems have these peripherals; and few if any historic systems have modern network interconnects. Thus, media translation usually entails linking a working version of the target system to a modern system by means of a serial line. KERMIT or some other simple protocol allows for a byte-by-byte network copy from the original media to a file on a modern system. Once the software has been located and moved to a file, the next issue is sources. Without sources, diagnostics and other test programs are useless; detected errors cannot be traced back to causes without manual decode of the binary program. The absence of sources was a principal reason for including symbolic disassembly and input in SIM. The final issue in software is licensing. Even though the target systems are obsolete and often no longer manufactured, the operating system software may be protected by copyrights and licenses. Most PDP-8 software is in the public domain; however, the PDP-11 and Nova operating systems are still licensed, as are all versions of UNIX. Corporate licensing policies rarely accommodate hobbyists; this limits operating system distribution to legitimate (that is, business) users. Table 7 lists the software found for each simulator in SIM. Table 7 Software for Simulators in SIM
Debug The debug path for a simulator depends on the available software. Ideally, the simulator would be debugged with the same software tests used to debug the target hardware, but this software is rarely archived. Diagnostics can provide low-level checking, but diagnostics typically check for broken parts in a correct implementation, rather than an incorrect implementation. Even when diagnostics do check architecture rather than implementation (as in the basic instruction diagnostics on the PDP-11 system), the absence of sources limits their utility. Consequently, the simulators were debugged mostly with simple hand tests and then with the operating systems. Operating systems are both exacting and imprecise tests of implementation correctness. Unless an operating system takes a deliberately restrictive view of hardware (for example, OS/8 does not use the PDP-8 interrupt system, and RT-11 does not use any optional PDP-11 instructions), the operating system will be sensitive to every error in implementation. For example, Digitals second-generation PDP-11 systems --- the PDP-11/05, 11/40, and 11/45 --- were debugged with DOS-11 and RSTS after diagnostics failed to detect certain subtle implementation errors. Unfortunately, in an operating system, the distance in time and space between the error and the symptom may be enormous, and the traceable path may be lengthy and complicated. Artifacts in the software can also complicate debug: the OS/8 disk image on the Internet contains a copy of BASIC that is broken. Results SIM implements four minicomputer architectures: PDP-8, PDP-11, Nova, and 18-bit PDP. Each simulator includes a particular CPU; basic peripherals such as terminal, paper tape, clock, and printer; and a selection of mass storage peripherals (see Table 8). In Defense of Computing's HistoryAs professional engineers who have been lucky enough to witness the computer revolution, the authors believe that the industry has a duty to keep early machines alive. There are practical reasons, such as preservation of software and data; beyond that, there is an obligation to future generations. In 100 years, the systems from computings early history will appear to be absolute dinosaurs of the past. Yet their educational and sociological value will be considerable. A computer is a machine with a soul, and it must be kept alive with its operating environment to show its abilities and the contemporary state of the art. Table 8 Architectures Implemented by SIM
The PDP-8 simulator has run the FOCAL69 and the OS/8 operating systems. The PDP-11 simulator has run the following operating systems: RT-11 V4 and V5; RSX-11M V4; RSTS/E V8; UNIX V5, V6, and V7; and BSD V2.9 and V2.11. The Nova simulator has run the RDOS V7.5 operating system. No system software for the 18-bit PDP systems has been found. The simulators were exercised on an AlphaStation 3000/600 workstation (approximately 120 SPECint92); the performance is given in Table 9. Table 9 Simulator Performance
Figures 2, 3, and 4 show screen shots from the various simulators running their principal operating systems. Figure 2: PDP-8 Simulator Running OS/8 ucoder> pdp8 PDP-8 simulator V2.2b sim> att rk0 os8.dsk sim> boot rk0 .DA 08-APR-96 .DIR 08-Apr-96 COPYIT.SV 2 09-Mar-93 PASS2 .SV 20 11-Oct-92 FORT3 .LD 3 06-Jul-93 DIRECT.SV 7 11-Oct-92 PASS2O.SV 5 11-Oct-92 CLOSE .SV 2 10-Jul-93 CCLX .SV 24 25-Feb-93 PASS3 .SV 8 11-Oct-92 FORT4 .FT 1 11-Jul-93 PIP .SV 11 11-Oct-92 RALF .SV 19 11-Oct-92 FORT4 .LD 2 04-Aug-93 FOTP .SV 8 11-Oct-92 RESORC.SV 10 11-Oct-92 FORT6 .LD 2 09-Aug-93 ABSLDR.SV 5 11-Oct-92 RUNOFF.SV 24 11-Oct-92 FORT5 .FT 1 09-Aug-93 BASIC .SV 11 11-Oct-92 SABR .SV 24 11-Oct-92 FORT5 .LD 2 09-Aug-93 BATCH .SV 10 11-Oct-92 SCROLL.SV 17 11-Oct-92 FORT6 .FT 1 09-Aug-93 BCOMP .SV 26 11-Oct-92 SET .SV 20 11-Oct-92 METSC .SV 10 11-Aug-93 BITMAP.SV 5 11-Oct-92 SRCCOM.SV 5 11-Oct-92 METSC2.SV 10 11-Aug-93 BLOAD .SV 10 11-Oct-92 TECO .SV 32 11-Oct-92 EMAT .SV 9 11-Aug-93 BOOT .SV 5 11-Oct-92 VERSN3.SV 10 11-Oct-92 EMDCT .SV 14 11-Aug-93 BRTS .SV 24 11-Oct-92 BUILD .SV 33 11-Oct-92 EMTST .SV 10 11-Aug-93 CHEKMO.SV 15 11-Oct-92 BASIC .OV 16 11-Oct-92 SINST1.SV 14 11-Aug-93 COMPAF.SV 5 11-Oct-92 BUILD6.SV 33 11-Oct-92 ADDER .SV 13 11-Aug-93 CREF .SV 13 11-Oct-92 BUILT .SV 33 12-Oct-92 FORT7 .FT 1 30-Aug-93 EDIT .SV 10 11-Oct-92 HELP .HE 1 18-Oct-92 CLEAR .LS 2 13-Jan-94 EDITS .SV 6 11-Oct-92 HELP .HL 72 18-Oct-92 CLEAR .CF 2 13-Jan-94 EPIC .SV 14 11-Oct-92 HELP .OC 4 18-Oct-92 CLEAR .SV 2 13-Jan-94 F4 .SV 20 11-Oct-92 FORT7 .LD 2 07-Sep-93 CLEAR .PA 1 13-Jan-94 FRTS .SV 26 11-Oct-92 JMPTST.SV 3 18-Oct-92 CLEAR .BN 2 13-Jan-94 FUTIL .SV 26 11-Oct-92 JMPJMS.SV 3 18-Oct-92 DEMO . 28 21-Mar-95 HELP .SV 5 11-Oct-92 RK8ENS.BN 1 30-Oct-92 DOS .PA 4 25-Jan-94 LIBRA .SV 11 11-Oct-92 INST1 .SV 14 01-Dec-92 DOS .BN 1 25-Jan-94 LIBSET.SV 5 11-Oct-92 INST2 .SV 11 01-Dec-92 DOS .LS 10 25-Jan-94 LOAD .SV 16 11-Oct-92 FORT .FT 1 17-Jun-93 SHELL .PA 1 25-Jan-94 LOADER.SV 12 11-Oct-92 FORT .LD 2 09-Jul-93 SHELL .BN 1 25-Jan-94 MATST .SV 9 11-Aug-93 FORT2 .LD 2 09-Jul-93 SHELL .LS 2 25-Jan-94 MDTST .SV 14 11-Aug-93 FORT2 .FT 1 22-Jun-93 BASIC .WS 1 10-Mar-94 OCOMP .SV 8 11-Oct-92 DOS .SV 2 25-Jan-94 FOO .PA 1 31-Mar-94 OPTF4 .SV 13 11-Oct-92 SHELL .SV 2 25-Jan-94 FOO .BN 1 31-Mar-94 PAL8 .SV 19 11-Oct-92 FORT3 .FT 1 26-Jun-93 95 Files In 980 Blocks - 2212 Free Blocks . Simulation stopped, PC: 01207 (KSF) sim> Figure 3: Nova Simulator Running RDOS ucoder> nova NOVA simulator V2.2b sim> att dp0 rdos.dsk sim> set tti dasher sim> boot dp0 Filename? NOVA RDOS Rev 7.50 Date (m/d/y) ? 4 8 96 Time (h:m:s) ? 16 26 0 R list/e sys-.- SYS5.LB 17216 D 05/24/77 13:18 05/31/85 [001017] 0 SYS.SV 56320 SD 12/14/95 16:21 12/14/95 [005057] 0 SYS.LB 20240 D 04/30/85 14:49 05/31/85 [000746] 0 SYS.OL 30720 C 12/14/95 16:21 12/14/95 [005272] 0 SYSGEN.SV 23040 SD 05/02/85 22:20 05/31/85 [001401] 0 R disk LEFT: 2158 USED: 2706 MAX. CONTIGUOUS: 2054 R Simulation stopped, PC: 41740 (LDA 1,4,3) sim> Figure 4: PDP-11 Simulator Running RT-11 ucoder> pdp11 PDP-11 simulator V2.2b sim> att rk0 rtrk.dsk sim> boot rk0 RT-11SJ (S) V05.04 . .da 8-apr-96 .dir 08-Apr-96 NL .SYS 2 18-Sep-89 RT11FB.SYS 94 18-Sep-89 RT11SJ.SYS 80 18-Sep-89 SPOOL .REL 11 14-Apr-87 PTESTX.MAC 23 27-Jan-94 GVI .SAV 5 18-Apr-90 BINCOM.SAV 24 27-Sep-88 DUP .SAV 49 27-Sep-88 DIR .SAV 19 27-Sep-88 IND .SAV 58 27-Sep-88 LIBR .SAV 24 27-Sep-88 MACRO .SAV 61 27-Sep-88 LINK .SAV 49 27-Sep-88 RESORC.SAV 25 27-Sep-88 FORMAT.SAV 24 27-Sep-88 ODT .SAV 8 05-Oct-89 PBCOPY.SAV 2 16-Feb-89 SYSLIB.OBJ 55P 05-Oct-89 ODT .OBJ 8 05-Oct-89 SYSMAC.SML 61 16-Mar-89 SIPP .SAV 21 27-Sep-88 DATE .SAV 3 02-Feb-89 IOP .SAV 11 24-Apr-89 SWAP .SYS 27 27-Sep-88 TT .SYS 2 18-Sep-89 DL .SYS 4 18-Sep-89 DM .SYS 5 18-Sep-89 DP .SYS 3 18-Sep-89 DX .SYS 4 18-Sep-89 RK .SYS 3 18-Sep-89 LS .SYS 5 05-Oct-89 MT .SYS 9 18-Sep-89 LP .SYS 2 18-Sep-89 SP .SYS 6 18-Sep-89 PIP .SAV 30 27-Sep-88 HANDLE.SAV 7 16-Feb-89 LD .SYS 8 26-Dec-90 MAC .SAV 61 27-Sep-88 LC .SYS 2 01-Jan-80 UCL .SAV 13 22-Dec-89 UCL .CCL 4 07-Oct-90 STARTS.COM 1 19-Jan-94 MTPIP .SAV 28 27-Feb-87 MTROL .SAV 17 27-Feb-87 MLIB .SYS 300 20-Dec-90 HELP .SAV 132 20-Dec-90 XPC .SAV 16 25-Jun-91 DESS .SAV 18 09-Mar-88 PTESTX.OBJ 8 49 Files, 1432 Blocks 3330 Free blocks .sho dev Device Status CSR Vector(s) ------ ------ --- --------- NL Installed 000000 000 TT Installed 000000 000 DL Installed 174400 160 DM Not installed 177440 210 DP Not installed 176710 254 DX Installed 177170 264 RK Resident 177400 220 LS -Not installed 176500 470 474 300 304 MT Installed 172520 224 LP Installed 177514 200 SP Installed 000000 110 LD Installed 000000 000 LC Installed 177514 200 . Simulation stopped, PC: 146506 (ASR R5) SIM> AcknowledgementsMax Burnet: I would like to thank Digital Equipment Corporation Australia Pty Ltd for tolerating my eccentricity and for supporting the Australian Digital museum collection. Also the DECUS Australia NOP (nostalgic obsolete product) SIG members for help, encouragement, knowledge, good humor, and camaraderie on the last Wednesday of the month. My thanks to my coauthor Bob Supnik for his continued inspiration; it is great to see a V.P. who can cut code with the best of them. My thanks also to the contributors to the Digital Notes files, a great source of folklore. Therein lies a treasure trove of solutions from people who are helping each other solve the same problems. Bob Supnik: The design, implementation, and debug of SIM was made possible by the generous help of many people. Craig St. Clair and Deb Toivonen of the Digital archives located rare manuals and documents on Digitals 12-bit, 16-bit, and 18-bit systems. Tom West and Don Lewine of Data General Corporation provided documentation and support on the Nova. Carl Friends private collection of Data General hardware and software was a crucial source of documentation and software for the Nova and the RDOS operating system. Doug Jones, Bill Haygood, and John Wilson allowed me to use the sources to their simulators and freely answered arcane questions about the hardware. In addition, Bill provided a working OS/8 system disk, and John copied several PDP-11 operating system disks off a working PDP-11/34. Megan Gentry was an important source of PDP-11 folklore, debugged some of the subtlest problems, created the Makefile, and provided the first and most frequently used distribution site. Ben Thomas provided the character-by-character I/O routines for VMS. Chris Suddick helped debug the PDP-11 floating-point code. Warren Toomey and the enthusiasts at PUPS (the PDP UNIX Preservation Society) in Australia allowed me access to their archive of early UNIX releases. Leendert Van Doorn debugged the PDP-11 simulator with UNIX V6, and Franc Grootjen with 2.11 BSD. Larry Stewart provided the initial impetus to the project, and Ken Harrenstein made an important contribution to preservation by implementing a DECsystem-10 simulator. Last, but not least, Max Burnet generously provided documentation and software from the Digital Australia collection, answered questions based on his 30 years of experience with Digitals systems, and made connections with and introductions to the worldwide community of historic machine hobbyists and enthusiasts. References and Notes1. As managing director of Digitals Australian subsidiary from 1975 to 1982, Max Burnet created and operated the PDP trade-in program. 2. M. Burnet, "An Update on the Museum Treasures," DECUS Australia Symposium Proceedings, August 1993. 3. M. Burnet, "The '94 Update on the Museum Treasures," DECUS Australia Symposium Proceedings, August 1994. 4. M. Burnet, "The Last Great PDP-11," DECUS Australia Symposium Proceedings, August 1995. 5. A. Ahi, G. Burroughs, A. Gore, S. LaMar, C.-Y. Lin, and A. Wiemann, "Design Verification of the HP 9000 Series 700 PA-RISC Workstations," Hewlett-Packard Journal, vol. 43, no. 4 (1992). 6. W. Anderson, "Logical Verification of the NVAX CPU Chip Design," Digital Technical Journal, vol. 4, no. 3 (1992): 38--46. 7. R. Calcagni and W. Sherwood, "VAX 6000 Model 400 CPU Chip Set Functional Design Verification," Digital Technical Journal, vol. 2, no. 2 (1990): 64--72. 8. A. Hutchings, "The Evolution of the Custom CAD Suite Used on the MicroVAX II System," Digital Technical Journal, vol. 1, no. 2 (1986): 48--55. 9. M. Kantrowitz and L. Noack, "Functional Verification of a Multiple-issue, Pipelined, Superscalar Alpha Processor the Alpha 21164 CPU Chip," Digital Technical Journal, vol. 7, no. 1 (1995): 136--144. 10. D. Siewiorek, C. Bell, and A. Newell, Computer Structures: Principles and Examples, "The IBM System/360, System/370, 3030, and 4300: A Series of Planned Machines That Span a Wide Performance Range," and "PMS Notation" (New York: McGraw-Hill, 1982). 11. R. Brunner, ed., VAX Architecture Reference Manual, chapter 9, "Compatibility Mode" (Bedford, Mass.: Digital Press, 1991). 12. This simulator has since been withdrawn from the network. 13. R. Rustin, ed., Debugging Techniques in Large Systems, R. Supnik, "Debugging Under Simulation" (Englewood Cliffs, N. J.: Prentice-Hall, 1971). 14. For information on and pictures of Data General minicomputers, see C. Friends web page at http://www.ultranet.com/~engelbrt/carl/museum/index.shtml. 15. For information on and pictures of many historic computers, see J. Jaegers web page at http://www.msn.fullfeed.com/~cube/collect.htm. 16. For information on and pictures of many historic computers, see P. Pierces web page at http://www.teleport.com/~prp/collect/index.html. 17. For documentation and relevant links, see D. Joness web page at www.cs.uiowa.edu/~jones/pdp8/. For his simulator, cross assembler, and core images, see ftp://ftp.cs.uiowa.edu/pub/jones/pdp8. 18. For information on his simulator and OS/8 disk image, see W. Haygoods web page at ftp://sunsite.unc.edu/pub/academic/computer-science/history/pdp-8/emulators/haygood. 19. For more information on J. Wilsons simulator (executable only), see his web page at ftp://ftp.update.uu.se/pub/ibmpc/emulators. 20. For more information on the PDP-11 UNIX archive, see the PUPS home page at http://minnie.cs.adfa.oz.au/PUPS/index.html. Biographies
Maxwell M. BurnetMax Burnet has been with Digital in Australia for 29 years. During that time, he has sold, serviced, or marketed all the machines in the collection. He managed the Digital Australia subsidiary for seven years. He was a salesman in Boston during 1971 and managed to replace an IBM 1620 at Tufts University with a PDP-10. He is currently the oldest surviving "techie" in the Sydney office and makes many corporate presentations in Australia. He manages the Australian DECUS Society, the Subsidiarys local content and export obligations with the Australian Government, and the local Product Assurance Group. He has collected a museum of early Digital machines and is known around Sydney as "Museum Max." He received a B.Sc. (honours) from Melbourne University. Robert M. SupnikBob Supnik has been with Digital in the United States for 19 years. He joined the Mass Storage Group and then moved into Semiconductor Engineering, where he successively managed the last PDP-11 implementation (the J-11), Advanced Development, the first single-chip VAX implementation (the MicroVAX chip), and the VAX Microprocessor Group. He also wrote or contributed to the microcode of every single-chip VAX microprocessor. In 1988, he started the Alpha program, which he managed through launch of the first products in 1992. He then became technical director, first of Engineering and then of the Computer Systems Division. In 1996, he became vice president of Research and Advanced Development. He has B.A. degrees in mathematics and in history from MIT, and an M.A. in history from Brandeis University. |
Legal |